Feature Subset Selection for Software Cost Modelling and Estimation
نویسندگان
چکیده
Feature selection has been recently used in the area of software engineering for improving the accuracy and robustness of software cost models. The idea behind selecting the most informative subset of features from a pool of available cost drivers stems from the hypothesis that reducing the dimensionality of datasets will significantly minimise the complexity and time required to reach to an estimation using a particular modelling technique. This work investigates the appropriateness of attributes, obtained from empirical project databases and aims to reduce the cost drivers used while preserving performance. Finding suitable subset selections that may cater improved predictions may be considered as a pre-processing step of a particular technique employed for cost estimation (filter or wrapper) or an internal (embedded) step to minimise the fitting error. This paper compares nine relatively popular feature selection methods and uses the empirical values of selected attributes recorded in the ISBSG and Desharnais datasets to estimate software development effort.
منابع مشابه
Improvement of effort estimation accuracy in software projects using a feature selection approach
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملFeature Subset Optimization through the Fireworks Algorithm
Software estimation models are vital in the software industry, given the fact that most software development projects over-run the time and budget limits. Recently, data mining algorithms have been applied to further improve the prediction accuracy of the software cost estimation models that are routinely used in industry. This paper introduces a novel Swarm Intelligence technique to fine-tune ...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1210.1161 شماره
صفحات -
تاریخ انتشار 2011